Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Piperazinium bis(dihydrogenarsenate)

Hazel S. Wilkinson and William T. A. Harrison*

Department of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland

Correspondence e-mail: w.harrison@abdn.ac.uk

Key indicators

Single-crystal X-ray study $T=293~{\rm K}$ Mean $\sigma({\rm C-C})=0.002~{\rm \AA}$ R factor = 0.018 wR factor = 0.050 Data-to-parameter ratio = 28.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $C_4H_{12}N_2^{2^+}\cdot 2H_2AsO_4^-$, contains a network of doubly protonated piperazinium cations (lying on centres of inversion) and dihydogenarsenate anions. The component species interact by way of cation-to-anion $N-H\cdots O$ and anion-to-anion $O-H\cdots O$ hydrogen bonds, the latter leading to infinite sheets of $(H_2AsO_4)^-$ anions.

Received 14 November 2006 Accepted 27 November 2006

Comment

The title compound, (I) (Fig. 1), was prepared as part of our ongoing studies of hydrogen-bonding interactions in the molecular salts of oxo-anions (Wilkinson & Harrison, 2004). Such materials show interesting crystal structures arising from the interplay of cation-to-anion $N-H\cdots O$ and anion-to-anion $O-H\cdots O$ hydrogen bonds (Lee & Harrison, 2003).

$$H_2N^+$$
 NH_2^+ \cdot 2 $(H_2AsO_4)^-$

The $(H_2AsO_4)^-$ anion in (I) shows its normal tetrahedral geometry about As, with the usual distinction (Table 1) between protonated and unprotonated As—O bond lengths (Wilkinson & Harrison, 2004). The piperazinium dication lies on a centre of inversion and adopts a typical chair conformation.

As well as coulombic forces, the component species in (I) interact by way of a network of $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds (Table 2). The $(H_2AsO_4)^-$ units are linked into infinite sheets (Fig. 2) by the $O-H\cdots O$ hydrogen bonds. The $O3-H1\cdots O2^i$ interaction (see Table 2 for symmetry codes) results in centrosymmetric dimeric pairs of $(H_2AsO_4)^-$ tetrahedra linked by pairs of $O-H\cdots O$ hydrogen bonds. The $O4-H2\cdots O1^{ii}$ hydrogen bond links these dimers into an

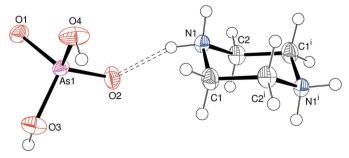
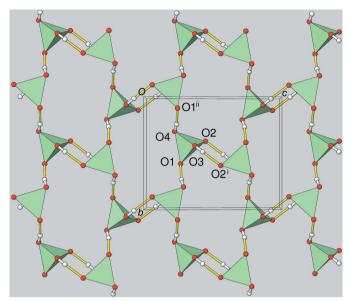



Figure 1 The molecular structure of (I) (50% displacement ellipsoids and H atoms are drawn as spheres of arbitrary radius). The hydrogen bond is indicated by a dashed line. [Symmetry code: (i) -x, -y, 1-z.]

© 2007 International Union of Crystallography All rights reserved

Figure 2 Detail of a part of a (100) hydrogen-bonded sheet of $(H_2AsO_4)^-$ groups in (I) in polyhedral representation, with the $H \cdots O$ parts of the hydrogen bonds coloured yellow. [Symmetry codes: (i) 1-x, 1-y, 1-z; (ii) 1-x, $-\frac{1}{2}+y$, $\frac{1}{2}-z$.]

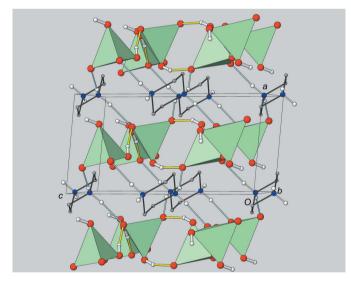


Figure 3 The packing in (I), showing the (100) dihydrogenarsenate layers mediated by the organic cations. The $H\cdots O$ parts of the $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonds are coloured blue and yellow, respectively. H atoms bound to C atoms are omitted for clarity.

infinite sheet (Fig. 3) lying parallel to (100). The $As \cdots As^i$ and $As \cdots As^{ii}$ separations are 4.0148 (3) and 5.0190 (3) Å, respectively. The topological connectivity of the As atoms defines a 6^3 sheet (O'Keeffe & Hyde, 1996), *i.e.* every As node participates in three polyhedral six-ring loops.

The anionic sheets are bridged by piperazinium cations, each of which participates in two $N-H\cdots O$ interactions from each of its NH_2 groups to nearby dihydrogenarsenate tetrahedra. This results (Fig. 3) in organic and inorganic layers that alternate along the a axis. A similar layered structure has been

reported for guanidinium dihydrogenarsenate, CH₆N₃·-H₂AsO₄ (Wilkinson & Harrison, 2005), despite the different cation:anion ratios in the two compounds. Other ammonium hydrogenarsenate salts contain isolated pairs of tetrahedra (Todd & Harrison, 2005) or polymeric chains of anions (Wilkinson & Harrison, 2004).

Experimental

A 0.5~M aqueous piperazine solution (10 ml) was added to a 0.5~M aqueous H_3AsO_4 solution (10 ml) to give a clear solution. Crystals of (I) were obtained as the water evaporated over the course of a few days.

Crystal data

$C_4H_{12}N_2^{2+} \cdot 2H_2AsO_4^-$	Z = 2
$M_r = 370.02$	$D_x = 2.135 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 5.8208 (3) Å	$\mu = 5.84 \text{ mm}^{-1}$
b = 8.9966 (4) Å	T = 293 (2) K
c = 11.0369 (5) Å	Block, colourless
$\beta = 95.126 \ (1)^{\circ}$	$0.44 \times 0.41 \times 0.22 \text{ mm}$
$V = 575.66.(5) \text{ Å}^3$	

Data collection

Bruker SMART1000 CCD	5723 measured reflections
diffractometer	2081 independent reflections
ω scans	1843 reflections with $I > 2\sigma(I)$
Absorption correction: multi-scan	$R_{\rm int} = 0.019$
(SADABS; Bruker, 1999)	$\theta_{\rm max} = 32.5^{\circ}$
$T_{\min} = 0.141, T_{\max} = 0.277$	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_0^2) + (0.0302P)^2$
$R[F^2 > 2\sigma(F^2)] = 0.018$	+ 0.0622P]
$vR(F^2) = 0.050$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\text{max}} = 0.001$
2081 reflections	$\Delta \rho_{\text{max}} = 0.54 \text{ e Å}^{-3}$
74 parameters	$\Delta \rho_{\min} = -0.50 \text{ e Å}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.061 (2)

Table 1Selected geometric parameters (Å, °).

As1-O1	1.6633 (11)	As1-O3	1.7214 (11)
As1-O2	1.6577 (11)	As1-O4	1.7095 (11)
O1-As1-O2	115.12 (6)	O2-As1-O3	111.08 (6)
O1-As1-O3	110.51 (5)	O2-As1-O4	110.53 (6)
O1-As1-O4	106.14 (6)	O3 - As1 - O4	102.62 (5)

Table 2 Hydrogen-bond geometry (Å, °).

-x, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

D $ H$ $\cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
O3-H1···O2 ⁱ	0.83	1.82	2.6211 (16)	161
$O4-H2\cdots O1^{ii}$	0.84	1.72	2.5533 (16)	170
$N1-H3\cdots O2$	0.90	1.86	2.7163 (16)	158
$N1-H4\cdots O1^{iii}$	0.90	1.87	2.7617 (16)	173
Symmetry codes: (i) $-x + 1 - y + 1 - z + 1$: (ii) $-x + 1 - y - \frac{1}{2} - z + \frac{1}{2}$: (iii)				

metal-organic papers

H atoms bound to O atoms were found in difference Fourier maps and refined as riding on their carrier O atoms in their as-found relative positions. H atoms bound to N and C atoms were placed in idealized positions (C—H = 0.97 Å and N—H = 0.90 Å) and refined as riding. The constraint $U_{\rm iso}({\rm H})=1.2 U_{\rm eq}({\rm carrier})$ was applied in all cases.

Data collection: *SMART* (Bruker, 1999); cell refinement: *SAINT* (Bruker, 1999); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *ATOMS* (Shape Software, 2004); software used to prepare material for publication: *SHELXL97*.

HSW thanks the Carnegie Trust for the Universities of Scotland for an undergraduate vacation studentship.

References

Bruker (1999). SMART (Version 5.624), SAINT (Version 6.02A) and SADABS (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Lee, C. & Harrison, W. T. A. (2003). Acta Cryst. E59, m739-m741.

O'Keeffe, M. & Hyde, B. G. (1996). Crystal Structures 1. Patterns and Symmetry, p. 357. Washington, DC: Mineralogical Society of America.

Shape Software (2004). ATOMS. Shape Software, Kingsport, Tennessee, USA.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Todd, M. J. & Harrison, W. T. A. (2005). Acta Cryst. E61, m1024–m1026.
Wilkinson, H. S. & Harrison, W. T. A. (2004). Acta Cryst. E60, m1359–m1361.

Wilkinson, H. S. & Harrison, W. T. A. (2005). Acta Cryst. E61, m2023– m2025